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ABSTRACT

The use of a generative approach for sound synthesis breaks
through the limitations of traditional approaches, propos-
ing novel ways to explore creative ideas. This paper demon-
strates a method to generate original bird vocalizations us-
ing a Variational Convolutional Autoencoder trained on
mel-spectrograms of bird song and call recordings. The
vocalizations are reconstructed by sampling the latent space
and decompressing the resulting mel-spectrogram. The
results are quite promising, in that our system is able to
generate a variety of bird vocalizations depicting plausible
songs and calls, by interpolating between existing vocal-
izations or sampling the latent space. A Twitter bot that
publishes a unique daily bird vocalization is also imple-
mented.

1. INTRODUCTION

The last decade has led to the emergence of a new gener-
ation of artists, exploring the possibilities of humans and
machines as equal collaborators. Although at first the cre-
ative applications of machine learning (ML) were limited,
mainly due to the lack of creative workflows, the insuf-
ficient volume of data and the inherent complexities of
utilizing an ML model, in recent years a range of tools
and frameworks have become available, bringing this dis-
cipline closer to the public.

In our study, we used Keras 1 to explore the creative po-
tential of Neural Networks (NN) for sound synthesis, with
an easy to train architecture.

Our motivation stems from the following needs:

1. There are few architectures capable of synthesising
or generating natural sounds. Systems such as [1]
require a complex setup and can generate only very
short audio fragments (1 second). A workflow capa-
ble of generating almost unlimited longer bird vocal-
izations can be used as a copyright-free system for
adding ever changing sound effects. This includes,
but is not limited to, the film and gaming industries,

1 https://keras.io/
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television and radio broadcasts, artistic installations,
wellness and mindfulness purposes.

2. Having a publicly available collection of bird vocal-
izations (distributed by a Twitter bot) and available,
open-source tools, would enable practitioners and
enthusiasts of ML and creative programming to test
their methods, compare them and encourage novel
research in the field.

Inspired by the Bird Sounds project by Manny Tan and
Kyle McDonald [2], where the authors use t-SNE [3] to or-
ganize thousands of bird sounds in a two-dimensional grid,
we decided to employ existing bird vocalizations to train a
Variational Convolutional Autoencoder (VCAE) to gener-
ate new bird vocalizations. The generated audio reaches
the public through a Twitter bot implemented specifically
for this purpose; the Jupyter Notebook containing our im-
plementation is available on GitHub.

2. BACKGROUND

2.1 Neural Networks and Audio

When it comes to sound and music generation, ML-based
audio processing is still broadening its horizon: the main
areas of research are speech synthesis [4] and music and
sound generation [5].

The use of deep neural networks to create longer output
sequences on a sample-by-sample basis is especially rele-
vant in this context. The two most common architectures
are WaveNet, based on convolutional layers [6], more sta-
ble but slower to converge, and SampleRNN, based on re-
current layers and different time steps [7] that converges
much faster, but sometimes induces unstable performance.

These technological advances are also used by the mu-
sicians as new tools, built entirely from scratch, or using
frameworks such as Google Magenta, whose mission is de-
fined as “exploring the role of machine learning as a tool in
the creative process” 2 . The outcome of this technological
democratization is projects such as Audio Deepdream [5]
where the NN is used to hallucinate soundscapes, or the
work by Carr and Zukowski [8], that feed a Recurrent NN
with instances of several music styles in order to compose
full albums. Generative Adversarial Networks (GAN) have
been explored in [1], where the authors implement and
compare two GAN architectures, the first one based on raw
audio and the second one based on spectrograms, with no

2 https://magenta.tensorflow.org/
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conclusive results in terms of human preference for one of
those two methods.

2.2 Spectrograms and Convolutional Networks

By converting the audio into a graphical representation,
image processing techniques can be applied. The spec-
trogram is the most commonly used graphical represen-
tation, because it retains information from both time and
frequency domains. This representation can be further im-
proved by applying a non-linear transformation that mim-
ics the behaviour of the human ear by reducing the resolu-
tion of the higher frequencies. The resulting spectrogram
(called mel-spectrogram [9]) is fed into a Convolutional
Neural Network (CNN), where a series of filters or kernels
are created and applied to all the input pixels, to extract
low- and high-level features. Then, a pooling operation is
used to reduce the size of these features. This pair of op-
erations is usually repeated several times until reaching a
desired level of image abstraction. The CNNs are a pop-
ular choice for a range of sound and music classification
and detection applications, but they are not widely used
for audio generation.

2.3 Variational Autoencoders

Since raw audio files are large, a lot of processing power
is needed to handle them in a reasonable amount of time.
In this context, dimension reduction is a tool for limit-
ing complexity and efficiently explore a multidimensional
space of possible new instances. The Autoencoder [10] is
a type of NN architecture divided in two parts (Figure 1):

1. The encoder compresses the information: each layer
has a smaller dimension than the previous one, un-
til reaching a bottleneck layer, which holds the most
dense representation of the data, efficiently perform-
ing dimension reduction;

2. The decoder restores the original data, using the code
vector as its input.

As input and the output have the same dimensions, this
system can be seen as a lossy compression scheme.

Figure 1. Architecture of a deep autoencoder. It consists of
an input and an output layer of the same dimensions, and a
number of hidden layers.

The intuition is that, once the autoencoder is trained, new
outputs can be generated by varying the code vector, an
operation often referred to as “sampling the latent space”.
Also, interpolation between different inputs is possible by
interpolating the code vectors generated by these inputs.
The main drawback is that, depending on the original data
distribution, the obtained latent space generated is usually
not smooth: thus, moving from point a to point b in the la-
tent space does not guarantee a continuous and meaningful
series of outputs. Furthermore, the smaller the code vec-
tor dimension, the more irregular the latent space will be.
To avoid this pitfall and ensure a smoother latent space,
a new generative model has been proposed: the so-called
Variational Autoencoder (VAE) [11].

In a Variational Autoencoder, the encoder generates a
stochastic space made of normal distributions N(µ, σ)
rather than points. Then, the network is forced to learn a
more relaxed representation of the input. For this archi-
tecture, the loss function is rewritten as the sum of two
terms: the reconstruction loss (e.g. mean square error) ap-
plied on the output, and the regularization loss applied on
the code vector to force a standard normal distribution [11]
(i.e. µ = 0 and σ = 1). Figure 2 depicts the additional
layers µ and σ that encode the mean and the standard de-
viation of every element of the code vector.

Figure 2. Representation of a Variational Autoencoder.
The extra layers regularize the latent space, forcing a more
compact grouping of the encoded values, thus avoiding
overfitting and allowing better results during the genera-
tive process.

2.4 Ornithology and Machine learning

Birds use two kinds of vocalizations: songs, associated
to territory and courtship, and calls, associated to keeping
contact among the flock and raising alarms. The distinction
depends on context, length and complexity of the vocaliza-
tions. In the field of ornithology, the study of bird songs
is highly regarded, as birds are one of the few biological
classes that share extensive vocal learning demands with
humans: “birds need to hear and imitate others in order to
develop their vocal communication signals” 3 . These skills
are absent in the greater apes, more closely related to hu-

3 https://gtr.ukri.org/projects?ref=BB%2FR008736%2F2
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mans than birds. So, modeling the birds’ learning process
can help us understand how humans learn to communicate.

There is also a growing interest in bird detection using
only sound. In the first Bird Audio Detection challenge
[12], the winning team [13] used an implementation based
on CNNs. In BirdCLEF 2018, a convolutional architecture
is also used for setting the baseline score [14].

Despite the efforts being made in speech or instrument
sound synthesis, no special work is being done on the syn-
thesis of bird vocalizations, with some exceptions based
on 1) Hidden Markov Models [15] based on human speech
but taking into account the fluctuations of the vocaliza-
tions and the unpredictability of the utterances or 2) par-
ticle swarm simulations [16], where bird songs are syn-
thesized by modulating an oscillator by means of Bezier
curves computed by a particle swarm.

3. DESIGN AND IMPLEMENTATION

Our implementation is made with Keras and the Tensor-
Flow [17] backend in a Jupyter Notebook.

3.1 Data

Our dataset is extracted from Cornell Guide to Bird Sounds:
Essential Set for North America 4 and contains 1379 files,
for a total of six hours and two minutes of audio. These
files have been cut into four-second fragments and down-
sampled to 22050Hz (16-bit, mono). To augment our data,
we used an overlap of 2 seconds on the original instances.
We discarded any audio clip shorter than 4 seconds.

The audio fragments were converted into 128 bins × 128
frames mel-spectrograms using librosa [18] with an FFT
window length of 4096 samples (185.7 ms), a hop size
of 690 samples (31.3 ms), Hamming windowing and 128
mel-bands. Note that phase information was thereby dis-
carded. We converted our spectrogram values to a dB scale
and stored as 16384-element vectors.

3.2 Training

The resulting set of spectrograms was used to train a VCAE
(Figure 3). The encoder stage has the following architec-
ture:

• Input layer: 16384 neurons, one for each pixel in the
spectrogram.

• A Reshape layer, to transform the one dimensional
input into a (128, 128) array.

• Six Conv2D (i.e. convolutional) + MaxPooling2D
(i.e. pooling) layers for stacking the filters and pro-
gressively reducing dimensionality.

• One Flatten layer to get a 1024-dimensional vector.

• Three 512-neuron Output layers, i.e. two Dense lay-
ers in parallel, which store µ and σ (the parameters
of each distribution), and one custom layer (Lambda)
for retrieving samples from the latent space using the
values from the two Dense layers.

4 https://store.birds.cornell.edu/product_p/ml-essential-1.htm

The six Conv2D layers stack the convolution filters (32,
64, 128, 256, 512 and 1024, respectively) using a 3 × 3
kernel size, with a stride of (1, 1). The MaxPooling2D
layers reduce the dimensionality from 128×128 to 64×64,
32×32, 16×16, 8×8, 4×4, and 1×1. All the layers use
a pool size of (2, 2) except the last one, which is (4, 4).

The variational layers are based on the Keras variational
autoencoder example 5 , including the reparametrization
trick to compute the derivative needed for backpropagation
through stochastic nodes.

The decoder is a network of four fully connected layers,
which progressively increase the number of neurons from
512 to 16384 (512, 2048, 4096, 16384 respectively) to re-
construct a 128× 128 spectrogram.

We use LeakyReLU [19] as the activation function in all
layers except the last one, where we use a sigmoid func-
tion, and in the stochastic layers, where we use the default
linear activation function.

Due to the extreme differences among bird vocalizations,
the full augmented dataset is shuffled and split 80-20 into
training and test sets (7256 and 1815 spectrograms respec-
tively) so fragments from the same vocalization will be
randomly assigned to one set, including partially overlap-
ping fragments. The NN is trained for 1500 epochs with a
batch size of 128, using Adam [20] as the optimizer with a
learning rate of 0.00025. We use a custom composite loss
function with two terms: the standard mean error squared,
plus the regularization loss.

The encoder and decoder are defined as separate models,
but we also define a model that encompasses them, so that
the user can access the encoder, the decoder or both at the
same time.

The generated output is reshaped to a 128 × 128 array
to recompose the mel-spectrogram; then, the frequency
bin amplitudes are converted from dB to linear scale; fi-
nally, librosa’s function mel_to_audio (which first approx-
imates an STFT magnitude from a mel-spectrogram and
then performs an approximate spectrogram inversion using
the Griffin-Lim algorithm [21]) is invoked to reconstruct
the waveform.

4. RESULTS

The VCAE training took 4 hours on a Titan X. At the end
of the process, we got a training loss of 58.47 and a val-
idation loss of 192.27 (both unitless), as shown in Figure
4. We chose to overfit the VCAE as the main use of this
model is exploring the latent space.

After training, we used the model in two different ways:

• Vocalization generation. To generate a new vo-
calization, we sample the latent space, generating a
512× 1 vector, where each value is sampled from a
normal distribution. This vector is fed to the trained
decoder, that outputs a spectrogram corresponding
to a new (i.e. non previously existing) vocalization.
We can also move in one (or several) dimensions of
the latent space, generating a series of evolving bird

5 https://keras.io/examples/variational_autoencoder/
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Figure 3. Variational Convolutional Autoencoder Architecture used in this paper. The input spectrogram is reshaped and
presented to six convolutional + pooling layers and then flattened to estimate a distribution in the latent space. These
distribution is sampled and reconstructed using a deep decoder.

Figure 4. Mean square error loss over 500 training epochs
for train and validation sets.

vocalizations. The spectrogram is finally converted
to audio.

• Vocalization interpolation. To interpolate between
bird vocalizations, we randomly choose two spectro-
grams s1, s2 from the training set, run them through
the encoder and get two coded representations of the
vocalizations r1, r2 (i.e. two different distributions
in the 512-dimensional latent space). The interpo-
lated code vector ri is calculated using this formula:
ri = α ·r1+(1−α)·r2, where 0 ≤ α ≤ 1. ri is then
fed to the decoder to generate a spectrogram which
is finally converted to audio. This transformation in
shown in Figure 5.

Our system is able of generating 14000 spectrograms per
second. Each spectrogram produces 4 seconds of audio,
and the conversion takes 0.75 seconds, so, if required, a
continuous stream of audio in real time can be produced.

300 files have been generated as content for the Twit-
ter bot (150 new vocalizations, 150 interpolated vocaliza-
tions). For each vocalization, a still picture has been gener-
ated, showing an overlay of the spectrogram and the wave-
form.

5. DISCUSSION

To evaluate the robustness of the VCAE architecture, we
made a series of tests:

• We plotted the representation of two randomly cho-
sen dimensions of the mean vector, and checked that
the values conform to the expected distribution.

• We plotted the activation of the filters in the first con-
volutional layer. The results matched our expecta-
tions, as the plot highlighted different features of the
spectrograms (edges, thresholds...)

• We presented it a fragment from the training set and
compared its reconstruction with the original audio
using both the spectrogram and the audio file. The
reconstructed spectrogram and audio file were highly
similar to the original files.

Figures regarding these checks are available in the GitHub
repository.

A pure convolutional architecture without the variational
layer would provide a more compact code vector, and pro-
duce a smaller validation loss, but for the purpose of a gen-
erative model, smoothness of the latent space is more de-
sirable than a perfect reconstruction.

By using the VCAE architecture, we introduce an extra
layer of complexity. In exchange, the latent space gets
reorganized in such a way that when building a random
code vector or interpolating two vocalizations, the results
are more bird-like.

Other types of architectures have been tested (e.g. sym-
metrical deep autoencoder and symmetrical convolutional
autoencoder) with worse performance than our non sym-
metrical convolutional encoder/deep decoder.

The generated audio demonstrated some interesting char-
acteristics. The number of unusable vocalizations (noisy
output, garbled sounds) is low. A higher amount of vocal-
izations exhibit what we could call a flocking effect. This
effect is due to the energy spread in the reconstructed spec-
trograms: the energy bands in the generated spectrogram
tend to lose definition and get spread into a wider fre-
quency range. At the same time, some artifacts appear (see
Figure 6). These two factors translate perceptually into the
sound of a flock of birds rather than a single one, as is
perceived as several birds singing not at the same exact
frequency, as in a real flock. When the system generates
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Figure 5. Seven-step interpolation examples. Between fragments 3507 and 6215 (Top two rows) and fragments 6058 and
683 (Bottom two rows). Rows 1 and 3 show the power mel-spectrogram. Rows 2 and 4 show the dB mel-spectrogram). As
can be observed, the intermediate steps in the latent space are more complex than merely crossfading between spectrograms.

a spectrogram with narrow high-energy bands, the flock-
ing effect disappears, and the vocalization is perceived as
if sung by a single bird.

Figure 6. Distribution of energy in an original spectrogram
(left) and in the reconstructed version (right) showing the
spread of the energy and the flocking effect.

By using a 512-dimensional code vector, the latent space
becomes less compact than desirable. This can be observed
at the midpoint of some interpolations, where the gener-
ated audio is garbled and noisy.

To obtain longer audios using the proposed architecture,
we start by choosing an original sample and calculating the
corresponding coordinates in the latent space. By orbiting

around that point we can obtain similar sounds. To create a
richer soundtrack, orbits with different radii and on differ-
ent dimensions can be combined. The smaller the radii, the
more similar the vocalizations will be to the original audio.
By adding Perlin noise to the orbit radius, we can generate
a continuous audio stream without wandering away from
the original sample.

6. CONCLUSIONS

In this work, we have investigated bird vocalization syn-
thesis. For that, we have designed and implemented a non-
symetrical Variational Convolutional Autoencoder capable
of generating 4-second bird vocalizations in real time. Two
vocalization generation methods are used: random sam-
pling of the latent space and interpolation between exist-
ing vocalizations. The recreated sounds present interest-
ing characteristics, proving that the approach presented is
a valid step towards the synthesis of nature sounds.

The proposed architecture is very fast to train compared
to other alternatives (e.g. GAN-based methods), taking
hours instead of days; it generates longer vocalizations; fi-
nally, it is relatively simple to extend or integrate in exist-
ing workflows.

Our code is available on GitHub 6 , including the pre-
trained model and the spectrograms, but without the origi-
nal audio files. Also, a Twitter bot 7 is posting a new bird
vocalization every day.

6 https://github.com/juanalonso/latentbirds
7 https://twitter.com/latentbirds/
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7. FUTURE WORK

Our results are promising, but there is room for improve-
ment. More specifically:

• Although a large variety of sounds have been used as
a training data-set (tweets, hoots, chirps, woodpeck-
ing, etc.), some of them were underrepresented, ren-
dering specific sound qualities more dominant to the
generative procedure. Using the full Cornell database,
or getting new vocalizations from other datasets (e.g.
xeno-canto 8 ) could improve the representation of
the missing types of vocalizations. Also, applying
existing knowledge about the structure of bird vo-
calizations [12] can improve the preprocessing of the
audio and the architecture of the VCAE.

• An interesting possibility is feeding the autoencoder
with non-bird related spectrograms (music, speech,
mechanical noises, other animal sounds) and see how
the VCAE performs while trying to approximate those
sounds.

• Use a labeled dataset to group birds of the same
species and implement vector arithmetic to interpo-
late between them.

• Improve the latent space by discriminating the less
interesting/unusable bird vocalizations. This can be
achieved by exploring the latent space checking for
the existence of outliers and analyzing the presence
of common characteristics or by creating an addi-
tional architecture to evaluate the quality of the dataset.
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